

User Manual

Three-phase Hybrid Inverter XD5-12KTR

深圳市英威腾光伏科技有限公司 INVT Solar Technology (Shenzhen) Co., Ltd

Contents

Chapter 1 Introduction	1
Chapter 2 Safety Precautions	2
2.1 Safety Symbols	2
2.2 Precautions for Operation	2
Chapter 3 Product Introduction	4
3.1 Intended User	4
3.2 Product Overview	4
3.3 Safety Instructions	6
3.4 Schematic Diagram of the Basic System	7
3.5 Product Features	
Chapter 4 Installation	<u> </u>
4.1 Unpacking Inspection	c
4.2 Before Installation	
4.3 Space Requirements	12
4.4 Dimension of Mounting Bracket	
4.5 Product Dimension and Weight	
4.6 Wall Mounting	14
4.7 Installation of Inverter	15
Chapter 5 Electrical Connection	17
5.1 Electrical Connection Overview	17
5.2 PV Wiring	18
5.3 AC Wiring	19
5.4 BAT Wiring	20
5.5 Communication Connection	20
5.6 Connection of Smart Meter	22
5.7 Connection of Grounding Wire	23
5.8 Three Inverters in Parallel	23
Chapter 6 Commissioning	25
6.1 Startup	25
6.2 Shutdown	25
Chapter 7 Parameter Settings	26
7.1 Menu Information	26
7.2 "Setting Info" Page	

Chapter 8 System Debugging	56
8.1 LCD Screen and Keys	56
8.2 Working Mode	58
8.3 Setting Parameters in Solarman App	59
Chapter 9 System Maintenance	61
9.1 Regular Maintenance of Inverter	61
9.2 Powering Off the Inverter	62
9.3 Removing the Inverter	62
9.4 Scrapping the Inverter	62
Chapter 10 Troubleshooting	63
Chapter 11 Product Specifications	70

Chapter 1 Introduction

This Manual describes the specification, installation, operations and maintenance of the hybrid inverter.

Please read this Manual carefully to understand the safety information, functions and features of the product before installing and using it. The information provided in this Manual is subject to update from time to time due to product improvements. The latest version and more product information are available on our official website.

Chapter 2 Safety Precautions

Improper use may result in risk of electric shock or burns. This Manual provides important instructions for installation and maintenance of the product. Please read this Manual carefully before using the product, and keep it for future reference.

2.1 Safety Symbols

The following are the safety symbols used in this Manual to indicate potential safety risks and important safety instructions.

WARNING!

The warning symbol indicates important safety information that, if not followed properly, could result in serious personal injury or even death.

RISK OF ELECTRIC SHOCK!

The electric shock hazard symbol indicates important safety information that, if not followed could result in electric shock.

SAFETY TIPS!

This symbol indicates important safety information that, if not followed, could result in serious personal injury or even death.

HIGH TEMPERATURE!

This symbol indicates safety information that, if not strictly followed, could result in burns

WARNING!

When performing maintenance on the input and output of the inverter after disconnecting it, wait at least 5 minutes for the inverter to discharge any remaining electrical charge.

2.2 Precautions for Operation

The XD5-12K series hybrid inverter has been designed and tested according to the applicable safety regulations. This ensures the personal safety of the user. However, as an electrical equipment, the inverter could cause electric shock or other injuries if not operated properly. Please operate the inverter in accordance with the following requirements:

- 1. The wiring, installation and commissioning work should be carried out by professionals.
- 2. Be sure to read this Manual before operating the product. We shall not be held liable for any failure or loss caused by improper operation.
 - 3. Before starting the installation or maintenance work, please break the connections at the AC side, DC side

and battery side, and then wait at least 5 minutes before proceeding to avoid electric shock.

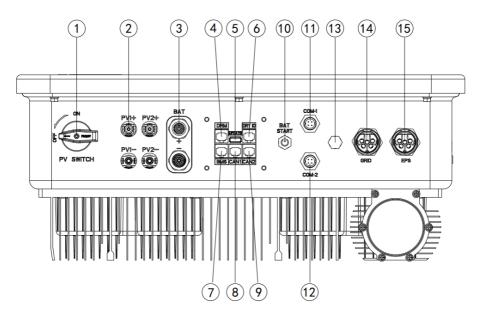
- When the inverter is running, the temperature of the housing is high. Do not touch it to avoid getting burned.
- 5. All electrical installations must conform to local electrical standards. The inverter should be connected to the power grid by professionals with the permission of the local power provider.
- 6. During the installation, insulated tools and personal protective equipment should be used to ensure personal safety. To touch the electronic components of the inverter, please wear anti-static gloves, anti-static wrist strap or anti-static clothing so as to protect the inverter against electrostatic discharge.
 - 7. Please install the inverter at a position that is out of the reach of children.
 - 8. Do not plug or remove the AC/DC terminal during normal operation of the inverter.
 - 9. The actual DC input voltage should not exceed the maximum allowable DC input voltage of the inverter.
- 10. Select an appropriate battery that matches the system, and set the battery type correctly. If you select a battery that does not match the hybrid inverter, the system cannot run.
- 11. If the battery has been completely discharged, please strictly follow the User Manual of the battery to charge the battery.
- 12. For system maintenance service, please contact our local authorized service personnel or our after-sales personnel.
 - 13. The hybrid inverter system should be connected to the power grid only after getting permission.
- 14. Turn off the PV switch before installing a solar PV panel during the sunny daytime, or there could be a serious risk of electric shock.
 - 15. Do not connect a PV string to more than one inverter, as this could cause damage to the inverters.
- 16. Do not connect a device that relies on continuous and stable power supply (such as a life-sustaining medical device), to the emergency power supply (EPS) port.

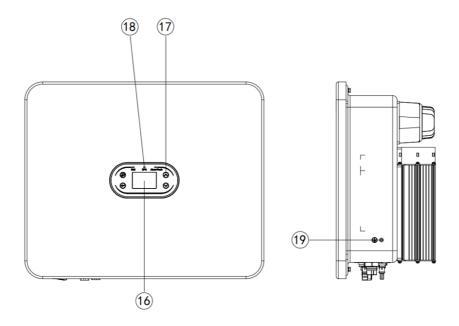
Chapter 3 Product Introduction

3.1 Intended User

The hybrid inverter in XD series should be installed only by trained professionals who are familiar with local regulations, standards and electrical systems and have a good knowledge of this product.

It is highly recommended that the installer read this Manual carefully, so as to learn about product installation, troubleshooting and communication networking.

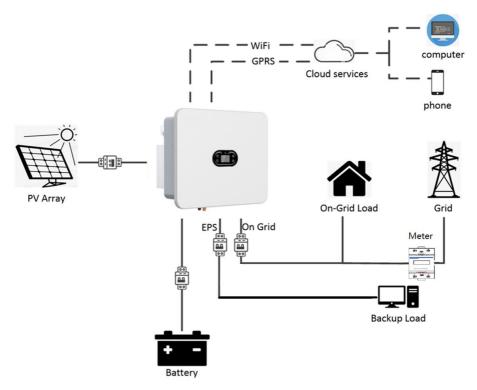

3.2 Product Overview


The inverter in XD series is intended to store the energy generated in the PV system or provided by the public power grid into the battery, and also output energy to the power grid. In the case of electric power failure, the hybrid inverter can provide energy to the load as a backup power supply.

This Manual applies to the following hybrid inverter models:

XD5KTR\XD6KTR\XD8KTR\XD10KTR\XD12KTR

Overview:



No.	Description	No.	Description
1	PV Input DC Switch	2	PV Input Terminal
3	Battery Terminal	4	RJ45 interface of DRMs (For Australia)
5	USB Port (Software Upgrade)	6	Dry Contact & NTC
7	BMS Lithium Battery Communication	8	CAN1 (Parallel Communication)
9	CAN2 (Parallel Communication)	10	Battery Cold Start Switch
11	COM-1 (RS485 / Wi-Fi / GPRS communication)	12	COM-2 (smart meter RS485 communication)
13	Breather Valve	14	Grid Terminal
15	EPS Output Terminal	16	LCD Screen
17	Function Keys	18	LED Indicator Light
19	PE Grounding Point		

3.3 Safety Instructions

- Be sure to read this Manual before operating the product. We shall not be held liable for any failure or loss caused by improper operation.
- 2. Select an appropriate battery that matches the system, and set the battery type correctly. If you select a battery that does not match the hybrid inverter, the system cannot run.
- If the battery has been completely discharged, please strictly follow the User Manual of the battery to charge the battery.
 - 4. The wiring, installation and commissioning work should be carried out by professionals.
- 5. During the installation, insulated tools and personal protective equipment should be used to ensure personal safety. To touch the electronic components of the inverter, please wear anti-static gloves, anti-static wrist strap or anti-static clothing so as to protect the inverter against electrostatic discharge.
 - 6. All electrical connections must comply with the safety regulations of the local power provider.
- For system maintenance service, please contact our local authorized service personnel or our after-sales personnel.
 - 8. The hybrid inverter system should be connected to the power grid only after getting permission.
- 9. Turn off the PV switch before installing a solar PV panel during the sunny daytime, or there could be a serious risk of electric shock.
 - 10. Do not connect a PV string to more than one inverter, as this could cause damage to the inverters.

3.4 Schematic Diagram of the Basic System

As shown in the diagram above, a complete hybrid inverter system in XD series consists mainly of the solar PV panels, hybrid inverter, battery, and power grid.

Note: The battery is an integral part of the hybrid inverter system. Please keep the installation environment well-ventilated and take necessary measures to control the ambient temperature, so as to prevent the risk of explosion caused by high temperature.

Battery characteristics:

Ingress protection: ≥IP65; pollution degree: PD2; indoor temperature: 0°C~40°C; RH: 5%~85%

3.5 Product Features

- 1. Intelligent management system and multiple working modes, meeting different customer needs.
- Allowing you to set the priority of grid connection, battery type and other inverter information on the LCD screen.
- 3. Dual MPPT, supporting 20A high current input, flexible module configuration.
- 4. Supporting 50A battery charge and discharge capability.

- 5. Ultra-wide battery voltage range of 120-600V, with good adaptability with batteries.
- 6. All-in-one design, providing backup power and peak-shaving function.
- 7. With a battery safety management system, supporting remote upgrade of BMS system.
- 8. Supporting anti-reflux prevention.
- Supporting over-temperature / over-current / short-circuit protection, ensuring safe, stable and reliable operation of the system.
- 10. Providing a variety of user-friendly communication modules (RS485, GPRS, Wi-Fi), supporting monitoring and remote operations through computer, mobile phone or Internet.
- 11. Supporting parallel configuration of a maximum of six inverters.
- 12. Supporting 100% unbalanced load.
- 13. UPS-level uninterrupted switching capability (<20ms).
- 14. A maximum conversion efficiency of up to 98.4%.
- 15. IP66 rating, low weight, small size, easy installation.

Chapter 4 Installation

4.1 Unpacking Inspection

The inverter has been fully tested and strictly inspected before delivery, but damage may still occur during transportation. Before unpacking, carefully check whether the product information indicated on the carton is consistent with that indicated in the Purchase Order, and whether the product package is in good condition. If any damage is detected, contact the carrier or your dealer and provide photos of the damaged area, so as to receive the fastest and best service.

To keep the inverter idle for a long time, please place it in the original carton and protect it against moisture and dust.

After taking the inverter out of the carton, please check the following:

- (1) Whether the inverter remains in good condition;
- (2) Whether you have received the User Manual and all of the connection parts and mounting parts;
- (3) Whether the items you have received are free from damage and shortage;
- (4) Whether the product information indicated in the nameplate on the inverter is consistent with that indicated in the Purchase Order;
- (5) Check with the List of Standard Deliverables below.

Standard deliverables for the hybrid inverter:

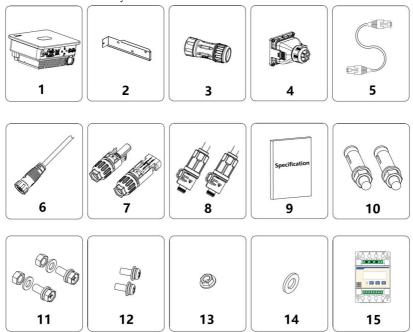


Fig. 4.1 Deliverables for Hybrid Inverter XD5~12KTR

Table 4-1 List of Deliverables for Hybrid Inverter

No.	Name	Quantity
1	Inverter	1
2	Wall-mounting Bracket	1
3	AC Connectors	2
4	Waterproof Junction Box	1
5	Network Cable	1
6	RS485 Communication Cable	1
7	MC4 Connectors (Pair)	2
8	Battery Connectors(Pair)	1
9	Documents(Set)	1
10	M6×50 Bolt Assemblies	3
11	M6×16 Bolt Assemblies	3
12	M4×12 Bolt Assemblies	2
13	M6 Flange Nuts	3
14	M6 Stainless Steel Flat Washers	3
15	Smart Meter	1

Please check the above items carefully, and contact your dealer immediately if you have any questions.

4.2 Before Installation

4.2.1 Installation Tools

Table 4-2 List of Installation Tools

No.	Installation Tools	Description	
1	Marker	Mark mounting holes	
2	Electric Drill	Drill holes in the mounting bracket or wall	
3	Hammer	Drive expansion bolts	
4	Adjustable Wrench	Fix the mounting bracket	
5	Screwdriver	Fix the inverter and tighten the junction box	
6	Slotted Screwdriver or Phillips Screwdriver	For AC wiring use	
7	Megger	Measure the insulation performance and resistance to ground	
8	Multimeter	Test circuits and measure AC/DC voltage	

No.	Installation Tools	Description
9	Electric Soldering Iron	Weld the communication cable
10	Wire Crimper	Crimp the DC terminal
11	Hydraulic Crimper	Crimp the AC O-terminal

4.2.2 Installation Conditions

- (1) The inverter can be installed in an indoor or outdoor environment.
- (2) During operation of the inverter, the housing and heat sinks will heat up. Do not install the inverter where it can be accessed easily.
 - (3) Do not install the inverter in an area where flammable or explosive materials are stored.
 - (4) Install the inverter in a well-ventilated environment, so as to facilitate heat dissipation.
 - (5) It is recommended to choose an installation position with shade, or build a sunshade.

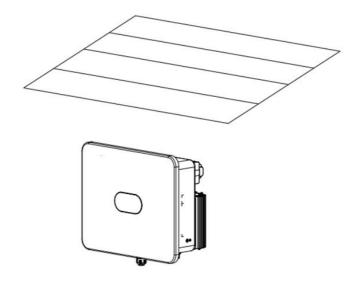


Fig. 4.2 Sunshade

- (6) The ambient temperature should be between -25°C~60°C.
- (7) Install the inverter away from electronic devices with strong electromagnetic interference.
- (8) The product should be installed on a fixed and solid object surface, such as a wall or metal bracket.
- (9) The installation position must provide reliable grounding for the inverter, and the grounding metal conductor must be made of the same material as the reserved grounding metal conductor of the inverter.

4.3 Space Requirements

(1) Install the inverter at such a height that allows the operator to observe the LCD indicator lights of the inverter easily.

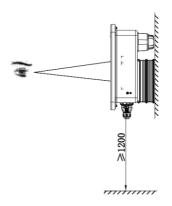


Fig. 4.3 Best Mounting Height

(2) Leave adequate space around the inverter to facilitate air circulation and future handling of the inverter. See Fig. 4.4.

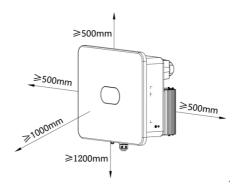


Fig. 4.4 Installation Spacing of Inverter

(3) To install more than one inverter, please keep a certain distance between the inverters and at the top/bottom of the inverters (see Fig. 4.5), so as to facilitate heat dissipation.

Fig. 4.5 Installation Dimension of Side-by-side Inverters

(4) The mounting surface should be upright (see Fig. 4.6). Install the inverter vertically or at a backward tilt of \leq 15° so as to facilitate heat dissipation. Forward tilt, horizontal installation, upside-down installation, backward tilt of >15° and sideways tilt are not allowed.

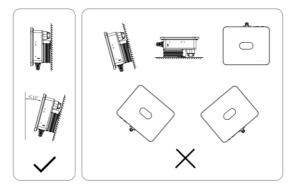


Fig. 4.6 Installation Location of Inverter

4.4 Dimension of Mounting Bracket

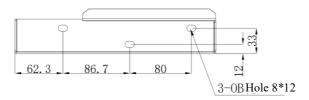
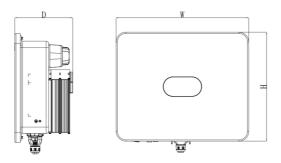
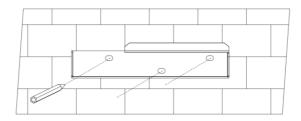


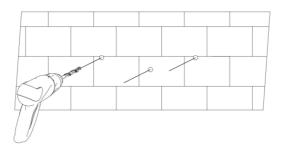
Fig. 4.7 Dimension of Mounting Bracket

4.5 Product Dimension and Weight

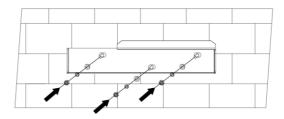



Fig. 4.8 Overall Dimension of Inverter

Dimension and net weight of Hybrid Inverter:

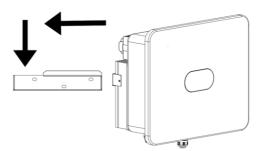

Model No.	Height (H)	Width (W)	Depth (D)	Net Weight
	(mm)	(mm)	(mm)	(kg)
XD5-12KTR	440	534	232	27

4.6 Wall Mounting

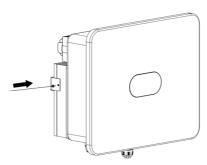

Step 1: The thickness of the wall for wall-mounted installation should be greater than or equal to 60mm. Using a marker and a spirit level, mark the points where you need to drill the holes.

Step 2: Drill the holes (diameter: $\phi 8$; depth: ≥ 55 mm) using a hammer drill, and then install M6×50 stainless-steel expansion bolts.

Step 3: Fix the mounting bracket. Clean the holes, drive expansion bolts into the holes using a rubber hammer. Tighten the nut to fix the tail of the bolt using a wrench, and then remove the nut, spring washer and flat washer. Fix the wall mount bracket to the wall with the nuts using a tightening torque of 5N•m.


4.7 Installation of Inverter

Step 1: Take the inverter out of the carton.


Step 2: If the installation position is high, you can lift up the inverter to install it to the mounting bracket. Use a hoisting device to lift the inverter off the ground by 100mm, then pause and check the fastening of the lifting ring and ropes. After confirming the inverter is fastened reliably, continue to lift it to its destination.

Step 3: Snap the bayonets of the inverter into the mounting bracket, and then press the inverter down to ensure that its radiator groove fits well with the mounting bracket.

Step 4: Tighten M4×12 screws into the left and right holes of the radiator with a torque of 2 N•m so as to fix the inverter onto the mounting bracket.

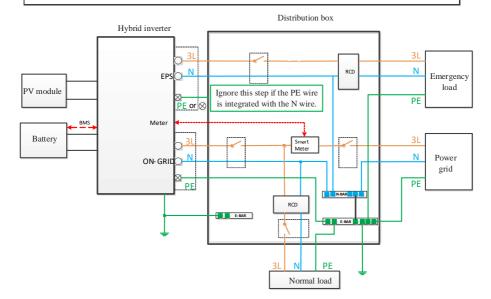


Chapter 5 Electrical Connection

5.1 Electrical Connection Overview

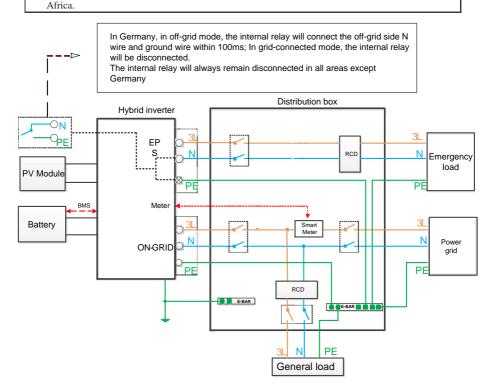
This product supports the following power grid systems.

Note: if the power grid system contains a N wire, the neutral to ground voltage should be lower than 10V.



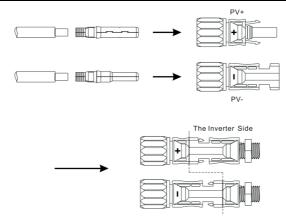
NOTE

- The connection modes between the N wire and PE wire at the GRID port and EPS port of the inverter may vary in different regions. Please consult your local regulatory requirements.
- The GRID port and EPS AC port of the inverter have built-in relays. When the inverter works in off-grid state, the built-in GRID relay will be open; when the inverter works in on-grid state, the built-in GRID relay will be closed.
- When the inverter is powered on, the EPS AC port will be charged; if you need to perform maintenance of the EPS load, please power off the inverter first in order to avoid electric shock.


NOTE

The following wiring method is applicable for Australia, New Zealand and South Africa.

NOTE

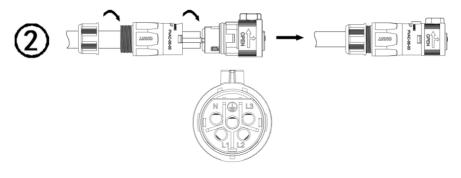

- Make sure the BACK-UP grounding wire is properly connected and secured; otherwise, the BACK-UP function may fail in the case of power grid failure.
- The following wiring method is applicable for regions other than Australia, New Zealand and South

5.2 PV Wiring

MC4 connectors are provided at DC input side of the hybrid inverter. Below are the connection steps:

- 1. Turn off the DC switch.
- Connect the positive terminal and negative terminal of the PV module respectively to the PV+ port and PVport of the hybrid inverter. Make sure the actual input voltage and current fall within the allowable range.

- Maximum allowable PV input voltage: 1100V (Please consider changes in the voltage at the minimum temperature).
 - Maximum allowable PV input current: 20A
 Note: It is recommended to use a specialized PV cable ≥4mm² (11AWG).


5.3 AC Wiring

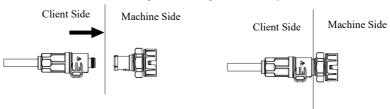
The AC output is located at the bottom right of the hybrid inverter. The terminal on the left is the EPS (Off-grid) port, and the terminal on the right is the GRID port. (Refer to the product introduction section for detailed location description).

Step 1: Unscrew the AC terminal, and then use an appropriate tool to remove it as shown below.

Step 2: Pass the cable through the rubber nut, sealing ring and threaded sleeve in turn. Connect the cable to the corresponding terminal based on the polarity mark, and then tighten the threaded sleeve onto the AC terminal as shown below:

Step 3: Connect the prepared AC terminal to the EPS terminal or GRID terminal of the hybrid inverter as shown below.

Note: 1. If you use the grid connection function only, connect the power grid to the GRID port of the inverter.


- 2. Do not connect the GRID port directly to the EPS port, as this could cause damage to the inverter.
- 3. Do not connect the power grid to the EPS port, as this could cause damage to the inverter.
- 4. Power cable for GRID port or EPS port shall be ≥4mm² (11AWG).

5.4 BAT Wiring

Install the battery cable in the following steps:

- 1. Unscrew the rubber nut on the waterproof cover of the hybrid inverter;
- 2. Pass the cable through the rubber nut, sealing ring, threaded sleeve and waterproof cover in turn;
- 3. Crimp the battery cable (supplied in the original package) to the corresponding O-terminal;
- Connect the positive (negative) terminal of the battery to the positive (negative) battery terminal of the inverter.

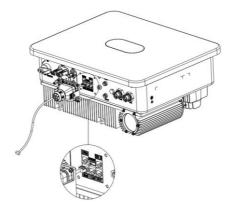
Upon connecting the terminals, you should hear a "click" sound.

Note: 1. A DC switch is required between the battery and the inverter.

Power cable between the battery and the inverter: ≤1.5m in length, ≥8mm² in cross sectional area (8AWG).

5.5 Communication Connection

5.5.1 Connection of Lithium Battery


To use a lithium battery, you need to connect the BMS system of the lithium battery in the following steps:

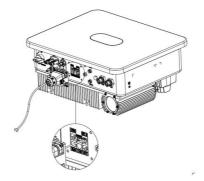
- 1. Unscrew the rubber nut on the waterproof cover of the hybrid inverter;
- 2. Pass the LAN cable through the rubber nut, sealing ring, threaded sleeve and waterproof cover in turn;

- 3. Connect the RJ45 terminal of the LAN cable to the BMS port of the hybrid inverter;
- 4. Lock the waterproof cover with screws;
- 5. Screw the rubber nut reliably onto the waterproof cover.

Definition of RJ45 interface:

Pin 1	BMS	12345678
Pin 2		
Pin 3		`\
Pin 4	CAN-H	
Pin 5	CAN-L	Pin 1
Pin 6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Pin 7	GND	
Pin 8	WAKE-UP	

Note: If using lead-acid batteries or lithium batteries without BMS communication, there's no need to connect the BMS communication line. Proceed directly to section 5.5.2.

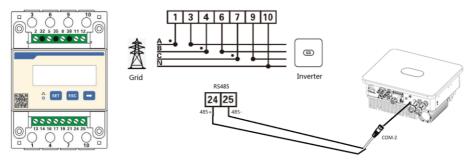

5.5.2 Connection for Lead-acid Battery Temperature Sensor and Dry Contact

To use a lead-acid battery, you need to connect a temperature sensor to monitor the surface temperature of the battery. Connect the temperature sensor in the following steps:

- 1. Unscrew the rubber nut on the waterproof cover of the hybrid inverter;
- 2. Pass the NTC cable through the rubber nut, sealing ring, threaded sleeve and waterproof cover in turn;
- 3. Connect the RJ45 terminal of the NTC cable to the DRY IO/NTC port of the hybrid inverter;
- 4. Lock the waterproof cover with screws;
- 5. Screw the rubber nut reliably onto the waterproof cover.

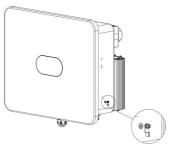
Definition of interface:

	NTC port	DRY IO Dry Contact Output	
Pin 1		NG OVER AL	
Pin 2		NC OUT (Normally Open)	
Pin 3	GND		
Pin 4			
Pin 5		COM	
Pin 6	TEMP		
Pin 7			
Pin 8		NO OUT (Normally Closed)	

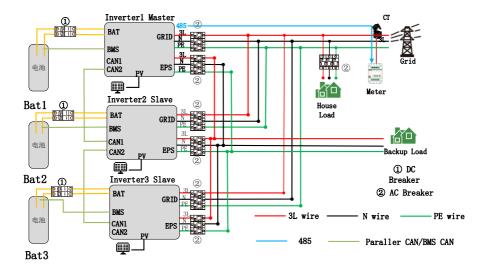


Note: The probe of the temperature sensor used to monitor the ambient temperature of the lead-acid battery should be shorter than 1.5m; if you use lithium battery instead, there is no need to install a temperature sensor.

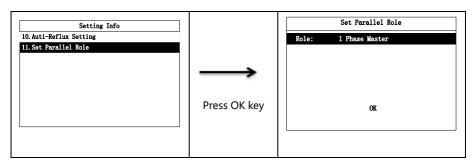
5.6 Connection of Smart Meter

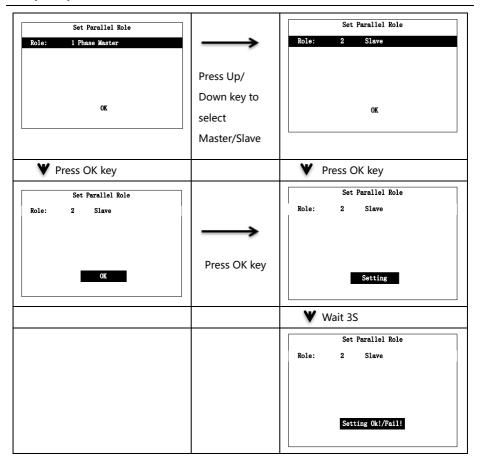

Ender user can also monitor home consumption with a smart meter. You can connect the communication cable of the smart meter as described below.

Connect the smart meter to COM-2 (waterproof RS485 terminal) by plugging and tightening, as shown in the figure below:



5.7 Connection of Grounding Wire


The hybrid inverter should be grounded reliably. The grounding wire should be $\geq 10 \text{mm}^2$. The grounding point (GND) is shown below.



5.8 Three Inverters in Parallel

Master/Slave Setting:

Chapter 6 Commissioning

6.1 Startup

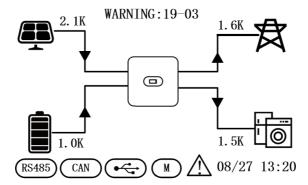
- Step 1: Close the AC circuit breaker of the inverter at GRID side.
- Step 2: Close the DC circuit breaker of the inverter at BAT side.
- Step 3: Close the AC circuit breaker of the inverter at EPS side.
- Step 4: Turn on the PV switch of the inverter.

Note: The system will work in On Grid state upon normal connections at PV side, GRID side and BAT side.

The green LED will remain on, and the message "State: On Grid" will appear on the screen of the hybrid inverter.

6.2 Shutdown

To stop the operation of the hybrid inverter, please disconnect all energy sources to enter automatic shutdown.

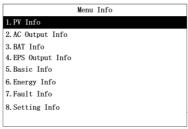

- Step 1: Turn off the PV switch.
- Step 2: Turn off the BAT switch.
- Step 3: Disconnect the power grid.

Both the LED light and LCD screen will be turned off.

Note: At the end of the above steps, please wait at least 5 minutes before proceeding to other operations.

Chapter 7 Parameter Settings

On the LCD screen, you can check the current state of the system, energy flow diagram, operation information and fault information, or set the language, priority of charging and discharging and system time. The main screen shows the energy flow diagram by default.

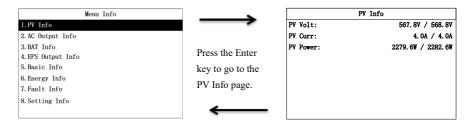


Below are the possible states of the inverter:

- 1. Initializing: In standby mode when no fault is detected, the inverter gets into waiting state for some reason.
- Waiting: The inverter enters self-check. If no fault is detected, the system will enter standby mode or normal working mode.
 - 3. On Grid: The inverter is working in on-grid state.
 - 4. Fault: In case of a fault, the inverter will stop working and get into protected mode.
 - 5. Programming: The inverter is currently programming.
 - 6. Off Grid: The inverter is working in off-grid state.
 - 7. Bypass Status: The inverter operates in bypass mode.

7.1 Menu Information

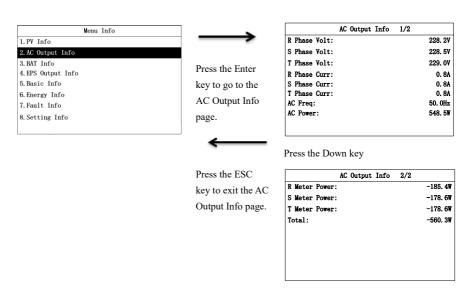
On the main screen, press the OK, ESC, Up or Down key to go to the Menu Info page. The Menu Info page is shown below.



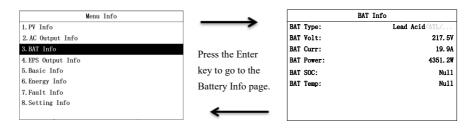
On the Menu Info page, press the Up or Down key to select a menu item. The page of each menu item is

shown below.

7.1.1 PV Input Information

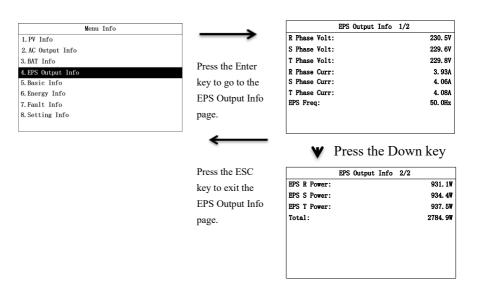

Here you can check the PV input voltage, current and power.

Press the ESC key to exit the PV Info page.

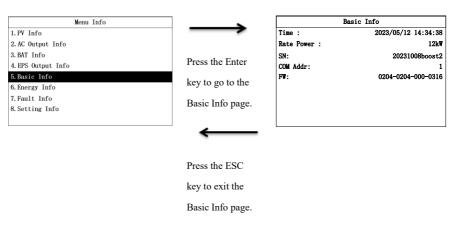

7.1.2 AC Output Information

Here you can check the AC voltage, frequency and current as well as the meter power.

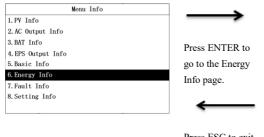
7.1.3 Battery Information


Here you can check the battery type, battery voltage, battery current, battery power, SOC as well as the battery's temperature.

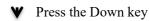
Press the ESC key to exit the Battery Info page.


7.1.4 EPS Output Information

Here you can check the EPS voltage, frequency, current and power as well as the load power.

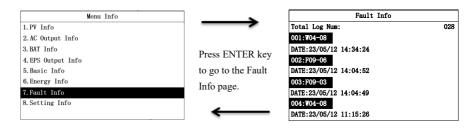

7.1.5 Basic Information

Here you can check the date & time, rated power, serial number, communication address and firmware version.


7.1.6 Energy Information

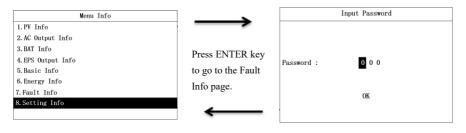
Here you can check daily and total energy generated by the inverter, daily battery charging/discharging energy, total battery charging/discharging energy, daily electricity sales and total electricity sales of the grid and daily electricity consumption and total electricity consumption of the load as well.

Press ESC to exit the Energy Info page.


Energy Info	1/2
PV Energy Today	54. 3KWh
BAT Charge Today	54. 3KWh
BAT Dischg Today	54. 3KWh
Grid Buy Today	54. 3KWh
Grid Sale Today	54. 3KWh
Load Energy Today	54. 3KWh

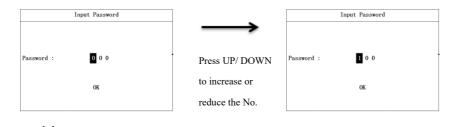
Energy Info	2/2
PV Energy Total	54. 3KWh
BAT Charge Total	54. 3KWh
BAT Dischg Total	54. 3KWh
Grid Buy Total	54. 3KWh
Grid Sale Total	54. 3KWh
Load Energy Total	54. 3KWh

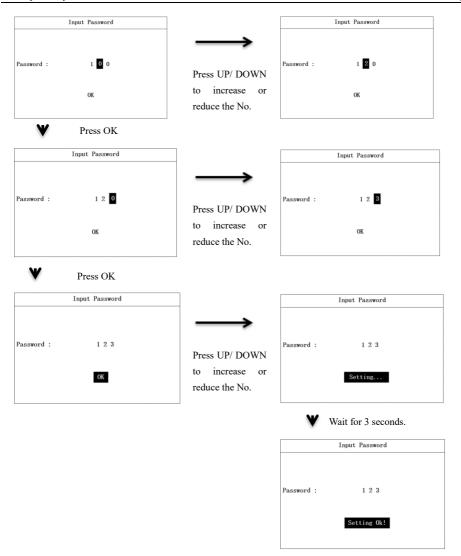
7.1.7 Fault Information


Here you can view the total number of fault/warning logs, as well as the main and sub codes for each fault/warning, along with the date and time of occurrence.

Press ESC to exit the Fault Info page.

7.1.8 Setting Information

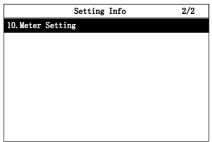

Enter the password to access the Settings page. On the Menu page, select Set Page. The Enter Password page is displayed. Set password 123 The Setting information page is displayed. Set password 321 The Local control page is displayed.



Press ESC to exit the Fault Info page

Enter the password in the following steps.

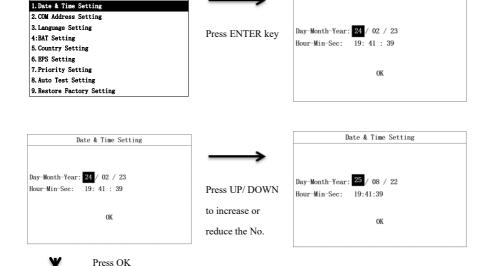
Press OK

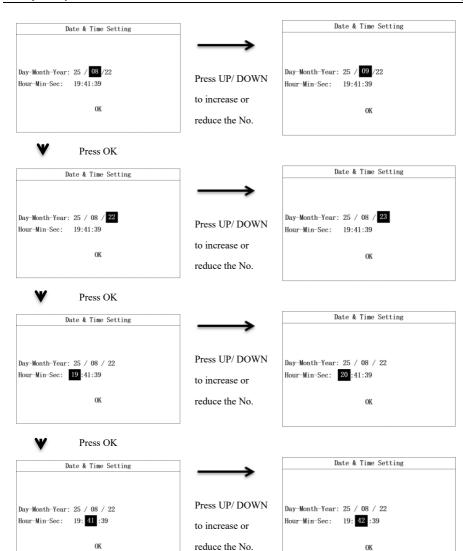


7.2 "Setting Info" Page

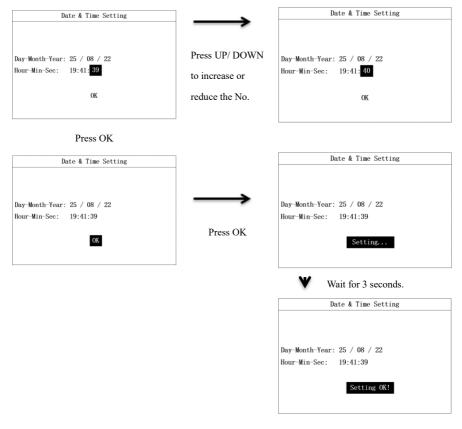
On the Setting Info page, you can set such parameters as the date & time, COM address, language, country, and priority. The Setting Info page is shown below.

Date & Time Setting

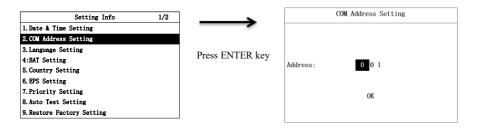

Setting Info	1/2
1. Date & Time Setting	
2. COM Address Setting	
3. Language Setting	
4:BAT Setting	
5. Country Setting	
6. EPS Setting	
7. Priority Setting	
8. Auto Test Setting	
9. Restore Factory Setting	
•	

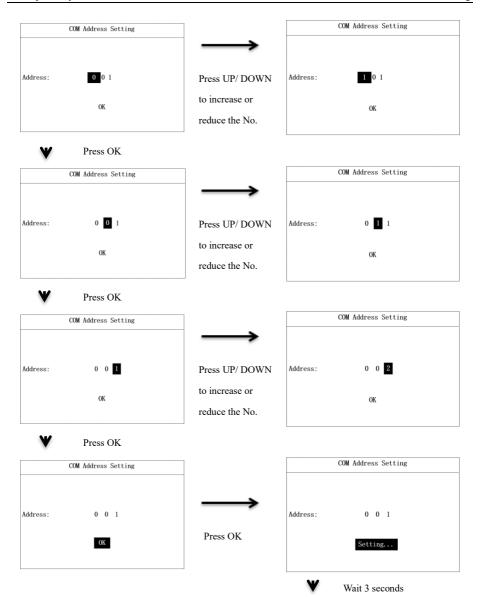


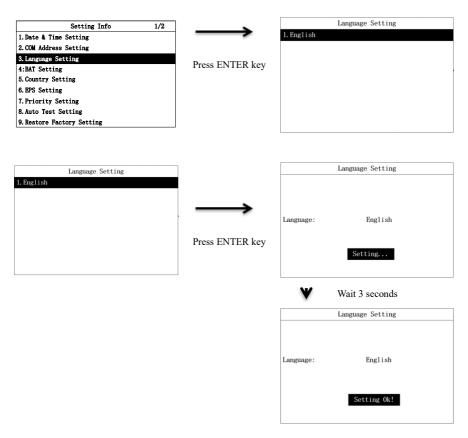
7.2.1 Date & Time Setting

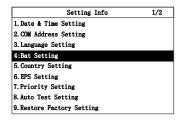

Setting Info

1/2



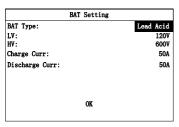


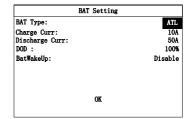

7.2.2 COM Address Setting


7.2.3 Language Setting

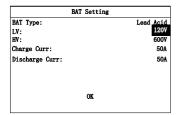
7.2.4 BAT Setting

The battery parameters displayed on the Setting Info page depend on the battery manufacturer. For lead-acid batteries, the battery parameters will include Charge Voltage (CV), Charge Current (CC) and Low Voltage (LV). For lithium batteries, the battery parameters will include Maximum Charge Current, Maximum Discharge Current,

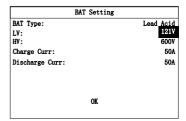

and Depth of Discharge (DOD) and Battery Wakeup function. You can set the lead-acid battery parameters in the following steps.


Press ENTER key

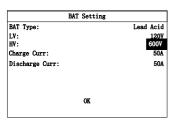
BAT Setting		
BAT Type:	Lead Acid	
LV:	120V	
HV:	600V	
Charge Curr:	50A	
Discharge Curr:	50A	
	OK	



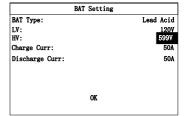
Press UP/DOWN to select lead-acid or li-ion battery manufacturer



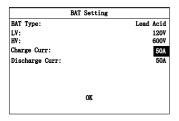
Press OK



Press UP/ DOWN to increase or reduce LV value

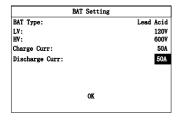


Press OK



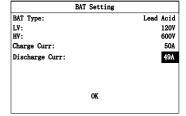
Press UP/ DOWN to increase or reduce HV value

Press OK

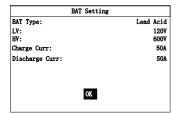

Press UP/ DOWN to increase or

reduce Charge Current value

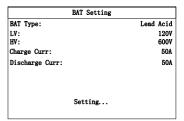
BAT Setting		
BAT Type:	Lead Acid	
LV:	120V	
HV:	600V	
Charge Curr:	49A	
Discharge Curr:	50A	
OK		



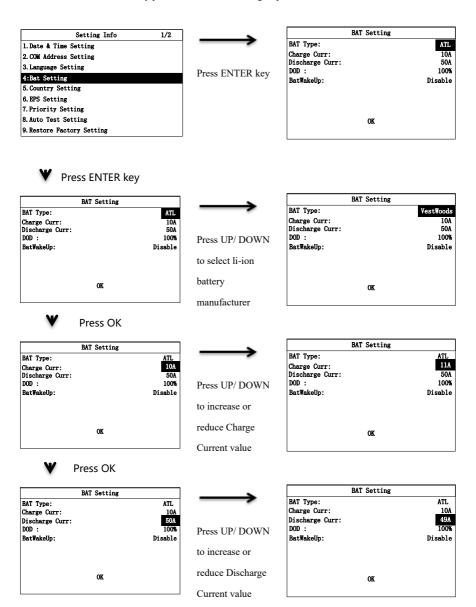
Press OK

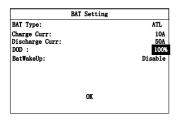


Press UP/ DOWN to increase or reduce Discharge Current value



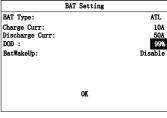
Press OK



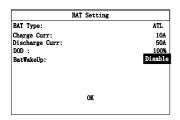

Wait 3S

BAT Setti	ing
BAT Type:	Lead Acid
LV:	120V
HV:	600V
Charge Curr:	50A
Discharge Curr:	50A
Setting (OK!

You can set the lithium battery parameters in the following steps.

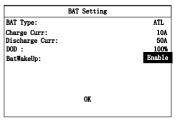


Press OK



Press UP/ DOWN to increase or reduce DOD (Depth of

♥ Press OK

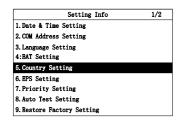


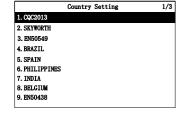
Discharge) value

Press UP/ DOWN to enable/disable BatWakeUp

♥ Press OK

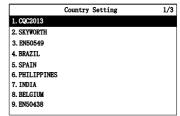
BAT S	etting
BAT Type:	ATL
Charge Curr: Discharge Curr:	10A 50A
DOD :	100%
BatWakeUp:	Enable
_	
)K

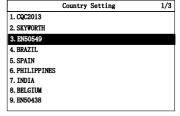



BAT Setting		
BAT Type:	ATL	
Charge Curr: Discharge Curr: DOD :	10A 50A 100%	
BatWakeUp:	Enable	
Setting		

₩ Wait 3 Seconds

BAT Setting		
BAT Type:		ATL
Charge Curr:		10A
Discharge Curr:		50A
DOD :		100%
BatWakeUp:		Enable
	Setting OK!	


7.2.5 Country Setting

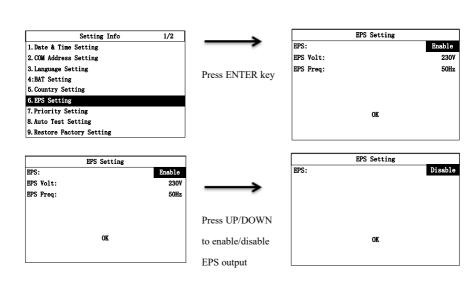


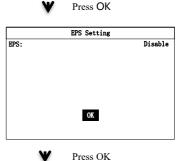
Press the OK key.

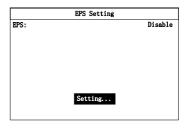


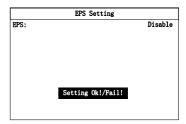
Press UP/DOWN to select Country or Grid Code)

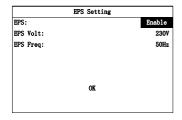
Press ENTER key



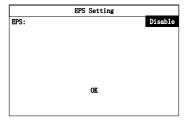



Wait 3 seconds

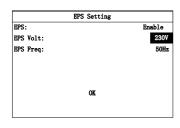

7.2.6 EPS Setting



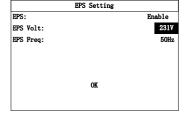
Wait 3 seconds



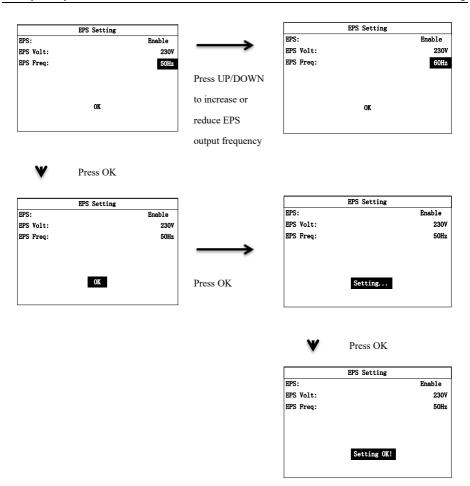
Enable the off-grid mode and set the EPS voltage and frequency in the following steps.



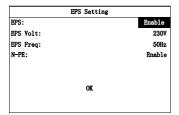
Press UP/DOWN to enable/disable EPS



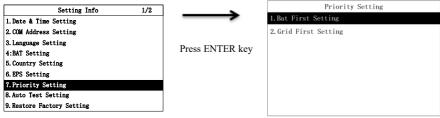
Press OK

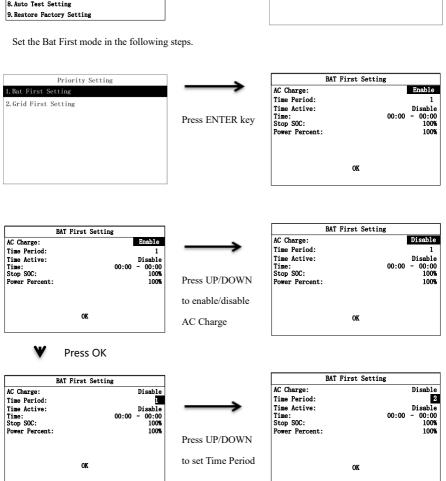


Press UP/DOWN to increase or reduce EPS output voltage

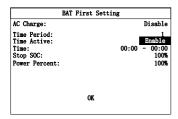


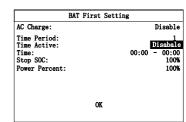
Press OK



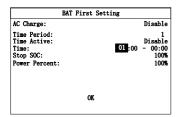

When the German safety regulations are set, there is one more N-PE setting item:

7.2.7 Priority Setting

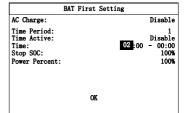

Priority setting includes Bat First mode and Grid First mode, the time periods other than Battery and Grid Priority are Load Priority.



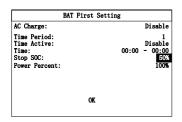
Press OK



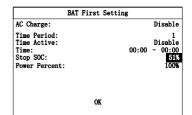
Press UP/DOWN to enable/disable Time Period



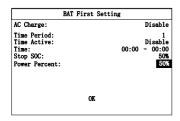
Press OK



Press UP/DOWN to increase/reduce Time value

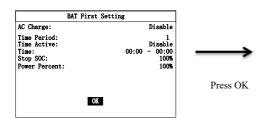


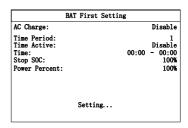
Press OK



Press UP/DOWN to increase/reduce Stop SOC value

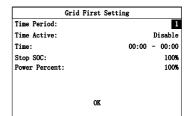
Press OK



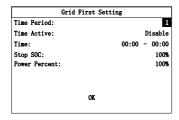

Press UP/DOWN to increase or reduce Battery Power Percent

A

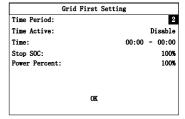
Press OK


Wait 3 seconds

Set Grid First mode in the following steps.



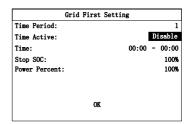
Press ENTER key


₩ P

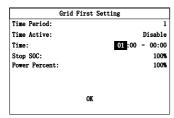
Press OK



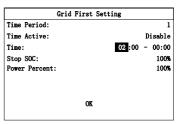
Press UP/DOWN to select Time Period


Y

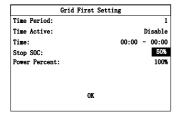
Press OK



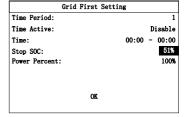
Press UP/DOWN to enable/disable Time Period



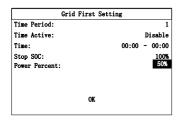
Press OK



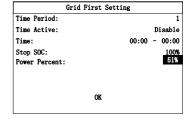
Press UP/DOWN to enable/disable Time value

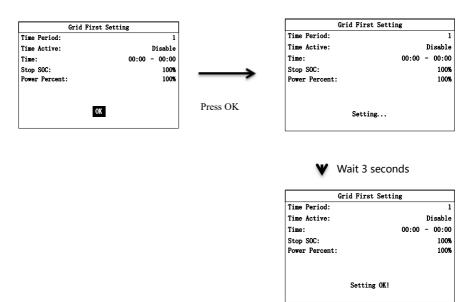


Press OK

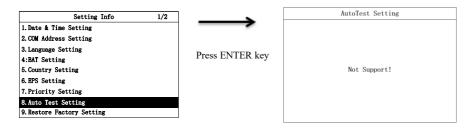


Press UP/DOWN to increase or reduce Stop SOC value


Press OK

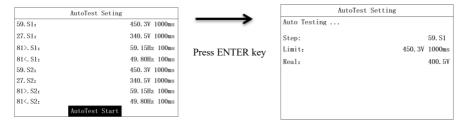

Press UP/DOWN to increase or reduce Battery

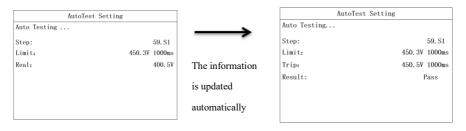
Power Percent



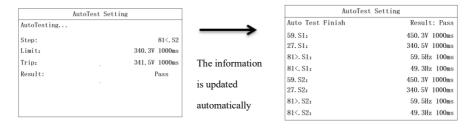
Press OK

7.2.8 AutoTest Setting

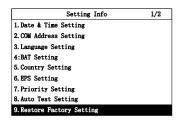

The auto test function will be available only if you select "Italy" on the Country Setting page. If you select any other country, the AutoTest Setting page will indicate "Not Support!"


If "Italy" is selected, the AutoTest Setting page is shown below.

Setting Info	1/2			AutoTest Seting
1. Date & Time Setting		\rightarrow	59. S1:	450.3V 1000ms
2. COM Address Setting			27. S1:	340.5V 1000ms
3. Language Setting		Danie ENTED Inne	81>. S1:	59.15Hz 100ms
4:BAT Setting		Press ENTER key	81<. S1:	49, 80Hz 100ms
5. Country Setting			59. S2:	450. 3V 1000ms
6. EPS Setting			27. S2:	340, 5V 1000ms
7. Priority Setting			81>. S2:	59. 15Hz 100ms
8. Auto Test Setting			81<. S2:	49. 80Hz 100ms
9. Restore Factory Setting			011.32:	AutoTest Start


The Real value will vary with time once you start the auto test.

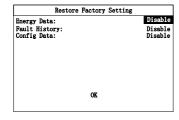
When an item has been tested, you can see its trigger limit and test result.



When all items have been tested, you can see the auto test results as well as the trigger limits of all items.

7.2.9 Restore Factory Setting

This function can restore calibration data and configuration parameters to default settings, as well as clear energy data and historical fault data. Restore factory settings is as follows:



Press ENTER key

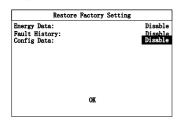
Restore Factory Setting
Energy Data:
Fault History:
Config Data:

Disable
Disable
OK

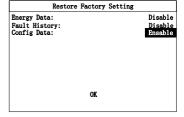
♥Press OK

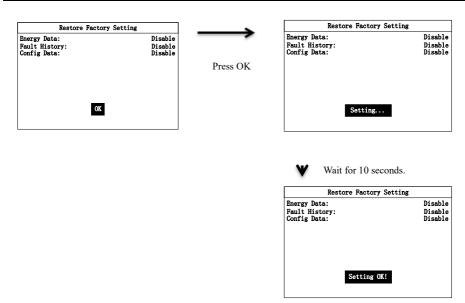
Press UP/DOWN to clear Energy Data.

₩ Press OK

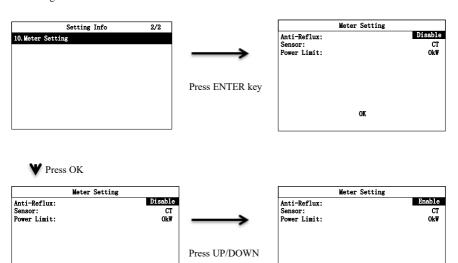


Press UP/DOWN enable or disable to clear Fault History.




Y Press OK

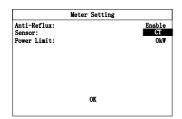
Press UP/DOWN to restore Config Data



7.2.10 Anti-reflux Flow Settings

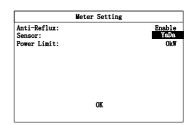
OK

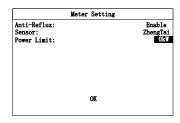
In the Meter Setting page, you can enable anti-reflux, select the CT, meter manufacturer, and set the power Limit. Settings:


to enable/disable

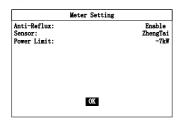
Anti-Reflux

OK

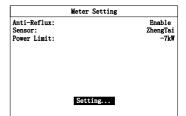

Enable

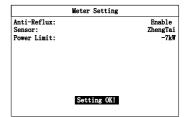



Meter Brand

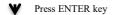


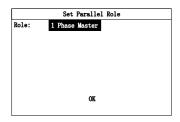
Meter Setting


Limit.

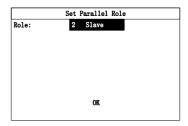


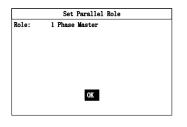
Press OK

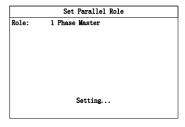

Wait 3 seconds.



7.2.11 Parallel Communication Setting


In parallel setting page we can set the inverter as master or slave:

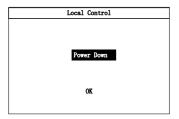




Press OK



Press OK



7.2.12 Set the on/off page

Enter the password 321 to enter the switch on/off page. The following page is displayed:

Chapter 8 System Debugging

8.1 LCD Screen and Keys

8.1.1 LCD Screen

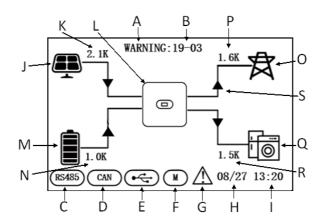


Fig. 8-1

Position	Description		
A	State		
В	Fault code		
С	RS485 communication		
D	CAN communication		
Е	USB port		
F	Smart meter		
G	Fault warning		
Н	Date		
I	Time		
J	PV input		
K	PV power		
L	Hybrid Inverter		
M	Battery indicator (20% × 5 bars)		

N	Battery power		
О	Power grid		
P	Grid power		
Q	Critical load		
R	Load power		
S	Energy flow arrow		

8.1.2 LEDs, Screen and Keys

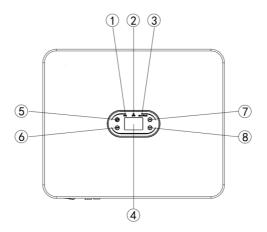


Fig. 8-2

Position	Description		
	Green LED remaining on: in the on-grid state.		
1	Green LED flashing: during the power-on self-test.		
	Green and yellow LED flashing: during the programming process.		
2	Yellow LED remaining on: in the off-grid state.		
3	Red LED remaining on: in the fault state.		
4	LCD screen		
5	Return key		
6	Enter key		
7	Up key		
8	Down key		

8.2 Working Mode

8.2.1 Normal Mode

In normal mode, the inverter may work in on-grid state or off-grid state.

On-grid State

When the hybrid inverter works in on-grid state, you can select a priority mode as needed. On the LCD screen, you can only set one period for each priority mode; while on the App, you can set up to three period for each priority mode.

1.Load First: This is the default priority mode. When the system works in this mode, the PV energy will be provided to the load first. When the PV energy is not sufficient to meet the load need, the battery will begin to supply power. When the PV energy has fulfilled the load need, the excess power will be stored in the battery. If no battery is connected or the battery is already full, the excess power will be supplied to the grid (if anti-reflux protection is not enabled).

2.Bat First: when the system works in this mode, the battery will be charged first. To charge the battery by AC power, you need to enable the AC Charge function and set the time interval and battery SOC. If the AC Charge function is not enabled, the hybrid inverter will only charge the battery by PV energy. You can also set the discharge power (maximum discharge percentage of the battery). In Bat First mode, the actual discharge energy of the battery will not exceed the set percentage.

3. Grid First: When the system works in this mode, the PV energy will be supplied to the grid first. Users can export energy to the grid during peak hours. You need to set the time interval and battery SOC. You can also set the discharge power (maximum discharge percentage of the battery). In Grid First mode, the actual discharge energy of the battery will not exceed the set percentage.

Off-grid State

In case of grid power failure, the system will automatically get into the off-grid state (you can disable this function as instructed in Section 9.1).

In this state, the system will output voltage via the EPS port and power the load by the battery and solar PV panel. Please note that the load power at the EPS port should not exceed the maximum output power (12,000W) of the inverter.

Note:

- 1. In Grid First mode or Bat First mode, you can only set one period on the LCD screen. If you need to set more periods, please use Solarman App.
- To charge the battery by AC power, you need to enter your login password and then enable the AC Charge function.

8.2.2 Fault State

The hybrid inverter has an intelligent control system that can continuously monitor and adjust the state of the

system. In case of a system fault or device fault, the fault information will be displayed on the LCD screen and the corresponding LED will be turned on.

Note:

- A) See Section 10.1 for more fault information.
- B) Some of the fault information is intended to remind you of possible internal faults of the inverter.

8.2.3 Firmware Upgrade

Do not turn off the power during the firmware upgrade progress. The system will automatically proceed to working mode at the end of firmware upgrade.

8.2.4 Self-test State

Before activating the working mode, the system will get into the power-on self-test state. If no fault is detected, the system will proceed to working mode; otherwise, it will get into the fault state.

8.2.5 Standby State

When no fault is detected and a certain operating condition has not been met, the system will get into the standby state.

8.2.6 Power-off State

To stop the operation of the hybrid inverter, please disconnect all energy sources to enter automatic shutdown. Below are the shutdown steps:

- 1. Shut down via the LCD screen setting.
- 2.Disconnect the PV side.
- 3. Turn off the BAT switch.
- 4. Disconnect the power grid. Both the LED light and LCD screen will be turned off.

Note: At the end of the above steps, please wait at least 5 minutes before proceeding to other operations.

NOTE

At the end of the above steps, please wait at least 5 minutes before proceeding to other operations.

8.3 Setting Parameters in Solarman App

Note: To ensure normal operation of the inverter, use Solarman App to set the parameters of the hybrid inverter first.

NOTE

To ensure normal operation of the inverter, please use Solarman App to set the parameters of the hybrid inverter first.

Solarman is a mobile App that can communicate with the hybrid inverter via Wi-Fi or GPRS. It allows you to:

- 1. Check the running data, software version and fault information of the inverter.
- 2. Set the grid parameters and communication parameters of the inverter.
- 3. Perform maintenance of the inverter.
- 4. Update the software version of the inverter.

For more details, please see the "Solarman APP User Manual".

Chapter 9 System Maintenance

The hybrid inverter has undergone a series of tests before delivery. To maintain and extend the service life of the inverter, you need to perform necessary routine maintenance in addition to using it in strict accordance with this Manual.

Make sure the inverter is disconnected from the power supply.

To operate the inverter, please wear personal protective equipment.

9.1 Regular Maintenance of Inverter

Maintenance Item	Process	Interval
Saving the inverter's running data	Use the monitoring software to read the inverter data in real time, and back up the recorded data periodically. Save the running data, parameters and logs of the inverter recorded by the monitoring software to a file. Check the monitoring software and view the parameter settings of the inverter through the hand-held device.	Every quarter
Inverter Running condition of the inverter	Observe whether the inverter is installed securely, damaged or deformed. Check if there is any abnormal sound during operation. Check the variables when the system is running in on-grid state. Check whether the heating of the inverter housing is normal, and use	
Cleaning the inverter	Check the ambient humidity and dust around the inverter. If they affect the heat dissipation of the inverter, shut down the inverter and turn off the power supply, and clean the inverter with a soft brush or dry cloth after it cools down.	Every six months
DC switch	Check whether the DC switch functions properly by turning it on and off 10 times consecutively.	Every year
Electrical connection		
Sealing	Sealing Check whether the sealing of the cable holes meets the requirements. If any cable hole is not sealed or shows a large sealing gap, re-seal it.	
Safety function Check the LCD screen and the system shutdown function. Simulate a shutdown and check the shutdown signal communication. Check the warning labels and replace them if necessary.		Every year

9.2 Powering Off the Inverter

DANGER

- •To perform maintenance of the inverter, please power off the inverter first so as to avoid damage to the inverter and avoid the risk of electric shock.
- •When the inverter is powered off, it will take time for the internal components to discharge. Please wait for the time period specified on the label until the inverter is fully discharged.
- Step 1: Disconnect the on-grid AC circuit breaker of the inverter.
- Step 2: Disconnect the back-up AC circuit breaker of the inverter.
- Step 3: Disconnect the EPS circuit breaker between the inverter and battery.

9.3 Removing the Inverter

- Step 1: Disconnect all electrical connections of the inverter, including the DC wire, AC wire, communication cable, communication module and grounding wire.
 - Step 2: Remove the inverter from the mounting bracket.
 - Step 3: Remove the mounting bracket.
 - Step 4: Keep the inverter properly for future use, according to the storage environment requirements.

9.4 Scrapping the Inverter

If the inverter cannot be used any longer, dispose of the inverter according to the electrical waste disposal requirements of the laws and regulations of your country/region. Do not dispose of the inverter as household waste.

Chapter 10 Troubleshooting

Fault Codes and Troubleshooting

If you are not professional at troubleshooting, contact your dealer for help. Please wear personal protective equipment and power off the inverter before troubleshooting!

This Chapter lists the faults by a list of fault codes, so that you can find troubleshooting actions quickly.

You can use the following methods to do troubleshooting. If they cannot help you, contact our After-sales Service Center.

Please provide the following information to our After-sales Service Center so that we can help you more quickly.

- Model No. of the inverter: _______;
 SN of the inverter: ________;
 System version of the inverter version 1: _________;
 Version 2: _________;
 MCU software version: _______;
- Fault code: :
- Installation environment of the inverter:

Description of fault:

Table 10-1 Fault Codes of Inverter

No.	Fault Type	Fault Code	Fault Information	Actions
		01-01	Low PV voltage	Check whether the PV panel is connected properly, damaged, covered with dust, or blocked by any objects.
1	PV voltage error	01-02	High PV voltage	Check whether the PV panel is connected properly, and whether the PV voltage is higher than the maximum working voltage of the inverter.
		01-03	Short circuit of PV panel	Check whether the PV panel is short-circuited.
		03-01	Low Bus voltage	This fault usually occurs in the early morning. Please check the cleanliness of the PV panel surface.
2	Bus voltage error	03-02	High Bus voltage	Check whether the PV panel is connected properly, and whether the PV voltage is higher than the maximum working voltage of the inverter.
		03-04	Over-voltage of hardware Bus	Restart the inverter. If the fault still exists, contact your dealer.
	<u> </u>	05-01	Over-current of inverter hardware	
		05-02	Over-current of inverter software	
		05-03	Over-current of boost hardware	
3	Over-current	05-04	Over-current of boost software	Restart the inverter. If the fault still exists,
3		05-05	Auxiliary power hardware TZ failure	contact your dealer.
		05-06	TZ Over-voltage of Bus hardware	
		05-07	Hardware TZ failure at LLC side	
		05-08	Over-current of buck-boost software	
	Temperature error	06-01	Abnormal inverter temperature	Check the inverter temperature. If the temperature is too high, cool the inverter
4		06-02	Abnormal Boost temperature	down before use.

No.	Fault Type	Fault Code	Fault Information	Actions	
		06-03	Abnormal radiator temperature		
		06-04	Abnormal ambient temperature		
		06-05	Abnormal buck-boost		
		06-06	Open circuit of NTC thermistor		
5	Insulation monitoring error	07-01	Insulation are grounded reliably. Power inverter for 5 minutes and the on again. If the fault still exist your dealer.		
6	Driver error	08-01	Driver error Restart the inverter. If the fault still excontact your dealer.		
		09-01	Communication error from ARM to master DSP		
		09-02	Communication error from master DSP to ARM	Restart the inverter. If the fault still exists,	
		09-03	Communication error from ARM to slave DSP	contact your dealer.	
		09-04	Communication error from slave DSP to ARM		
7	Communication error	09-05	Communication error between master and slave chips - master chip failure	Restart the inverter. If the fault still exists, contact your dealer.	
		09-06	Communication error between master and slave chips - slave chip failure	Restart the inverter. If the fault still exists, contact your dealer.	
		09-07	Communication error between DSP and AFCI	Restart the inverter. If the fault still exists, contact your dealer.	

No.	Fault Type	Fault Code	Fault Information	Actions		
	Leakage current error	10-01	High static leakage current	1. If the fault occurs occasionally, it may		
		10-02	Abrupt fault of 30mA	be caused by accidental abnormality of external cables. You can restart the inverter to resume normal operation.		
8		10-03	Abrupt fault of 60mA	If the fault occurs frequently or lasts long, check whether the PV string is		
		10-04	Abrupt fault of 150mA	grounded reliably.		
9	Relay failure	11-01	Open circuit of relay	Restart the inverter. If the fault still exists,		
9	Relay landie	11-02	Short circuit of relay	contact your dealer.		
10	Internal fan failure	12-01	Internal fan failure	Restart the inverter. If the fault still exists, contact your dealer.		
11	DCI error	14-01	DCI error of R-phase	Check whether the inverter and PV panel are grounded reliably. Power off the inverter for 5 minutes and then power it on again. If the fault still exists, contact your dealer.		
		19-01	Inconsistent AC voltage values			
	Consistency	19-02	Inconsistent Bus voltage values			
		19-03	Inconsistent ISO voltage values			
12		19-04	Inconsistent PV voltage values	Restart the inverter. If the fault still exists, contact your dealer.		
		19-05	Inconsistent GFCI			
		19-06	Bus voltage sampling error			
		19-07	PV current sampling error			
		31-01	Level-1 under-voltage of AC power	I. If the fault occurs occasionally, it may be caused by momentary abnormality of the power grid.		
13	AC voltage error	31-02	Level-1 over-voltage of AC power	The inverter will resume normal operation when the power grid gets back to normal. 2. If the fault occurs frequently, check whether the power grid is connected properly.		

No.	Fault Type	Fault Code	Fault Information	Actions
		31-03	No AC voltage	Check whether the AC power is connected properly.
		31-04	Level-2 under-voltage of AC power	
		31-05	Level-2 over-voltage of AC power	I. If the fault occurs occasionally, it may
		31-06	Startup under-voltage of AC power	be caused by momentary abnormality of the power grid. The inverter will resume normal operation when the power grid
		31-07	Startup over-voltage of AC power	gets back to normal. 2. If the fault occurs frequently, check
		31-08	Transient over-voltage of interruptions	whether the power grid is connected properly.
		31-09	Anti-islanding over-voltage	
		31-10	Oscillation of grid voltage	
	AC frequency error	33-01	Level-1 under-frequency of AC power	
		33-02	Level-1 over-frequency of AC power	I. If the fault occurs occasionally, it may
		33-03	Level-2 under-frequency of AC power	be caused by momentary abnormality of the power grid. The inverter will resume normal operation when the power grid
14		33-04	Level-2 over-frequency of AC power	gets back to normal. 2. If the fault occurs frequently, check whether the power grid is connected
		33-05	Startup under-frequency of AC power	properly.
		33-06	Startup over-frequency of AC power	
15	Remote shutdown	37-01	Remote shutdown instruction	Check whether any one is trying to shut down the inverter remotely.

No.	Fault Type	Fault Code	Fault Information	Actions
16	AFCI error	38-01	Failure of PV string	Please turn off the inverter and open the input and output switches, and turn on the
10	AFCI error	38-02	Failure of PV string 2	inverter again 5 minutes later. If the fault still exists, contact your dealer.
17	Power-on self-test error of	39-01	Power-on self-test error of PV string 1	Please turn off the inverter and open the input and output switches, and turn on the
17	AFCI	39-02	Power-on self-test error of PV string 2	inverter again 5 minutes later. If the fault still exists, contact your dealer.
18	AutoTest failure	41-01	AutoTest failure	Please turn off the inverter and open the input and output switches, and turn on the inverter again 5 minutes later. If the fault still exists, contact your dealer.
19	N-PE fault	42-01	N-PE voltage error	Check whether the AC wires are connected properly and reliably to the inverter.
20	Power-on self-test error of leakage current	43-01	Leakage current sensor failure	Please turn off the inverter and open the input and output switches, and turn on the inverter again 5 minutes later. If the fault still exists, contact your dealer.
21	PV string detection error	44-01	PV string failure	Please turn off the inverter and open the input and output switches, and turn on the inverter again 5 minutes later. If the fault still exists, contact your dealer.
22	Auxiliary power error	45-01	Auxiliary power input and output switches, and t inverter again 5 minutes later. I still exists, contact your dealer.	
23	Short circuit of EPS	46-01	Short circuit of EPS	Check whether the output wiring is correct at the EPS port.

Table 10-2 Warning Codes of Inverter

	10-2 Walling	Fault			
No.	Fault Type	Code	Fault Information	Displayed Information	
1	Low fan	01-07	Internal fan 1	Please turn off the inverter and open the input and output switches, and turn on the inverter again 5 minutes later. If the fault still exists, contact your dealer.	
	Communic	04-01	Meter failure	Check whether the smart meter is connected properly and supplies power normally.	
2	ation of anti-reflux	04-08	Communication error of meter	Check whether the smart meter is connected properly and supplies power normally.	
	meter	04-16	CT cable error	Check whether the CT cable is connected properly.	
3	Out-of-ran ge grid voltage	05-00	Out-of-range voltage	If the fault occurs occasionally, it may be caused by momentary abnormality of the power grid. The inverter will resume normal operation when the power grid gets back to normal. If the fault occurs frequently, check whether the power grid is connected properly.	
4	Short circuit of PV	06-01	Short circuit of PV1 Short circuit of	Check whether the PV input is normal and whether the circuit is short.	
			PV2		
5	Overload	07-01	EPS overload	Reduce the load at the EPS port.	
6	Full battery	46-01	Full battery	The battery is fully charged.	
7	Low	47-01	The battery needs to be charged.	Please charge the battery soon.	
,	battery voltage	47-02	The battery can only be charged.	Check the mode settings and charge the battery.	

Chapter 11 Product Specifications

Model	XD5KTR	XD6KTR	XD8KTR	XD10KTR	XD12KTR	
Input parameters (DC)	ı					
Maximum input voltage (V)	1100					
Maximum MPPT current (A)	20					
Maximum MPPT short-circuit current (A)			40			
Start-up voltage (V)			160			
MPPT voltage (V)			150-1000			
Number of MPPT channels			2			
Number of strings per MPPT			1			
Battery parameters (De	C)					
Battery type			Lithium/Lead-acid			
Battery voltage (V)			120-600			
Maximum charge and discharge current (A)	50					
Battery communication	CAN/485					
Output parameters (A	Output parameters (AC)					
Rated output power (W)	5000	6000	8000	10000	12000	
Maximum input power (W)	5500	6600	8800	11000	13200	
Rated voltage (V)			3/N/PE, 380/400			
Rated grid frequency (Hz)			50/60			
Maximum output current (A)	8.3	10	13.3	16.7	20	
Power factor			$0.8 \; lead \sim 0.8 \; lag$			
Total current harmonic distortion			<3% (rated power)			
Input parameters (AC)	l					
Maximum input power (W)	7500	9000	12000	15000	18000	
Maximum input current (A)	11.4	13.6	18.2	22.7	27.3	
Rated voltage (V)			3/N/PE, 380/400			
Rated grid frequency (Hz)	_		50/60			
Off-grid parameters (A	AC)					
Rated output power (W)	5000	6000	8000	10000	12000	

Maximum input power (W)	5500	6600	8800	11000	13200	
Rated voltage (V)	3/N/PE,380/400					
Rated grid frequency (Hz)	50/60					
Peak power (W,s)	10000,60	12000,60	15000,60	15000,60	15000,60	
Switching time (ms)			<20			
Maximum output current (A)	8.3	10	13.3	16.7	20	
THDv (linear load)			<2% (rated power)			
Efficiency						
Maximum efficiency	>98.2%	>98.2%	>98.2%	>98.4%	>98.4%	
European efficiency	>97.6%	>97.6%	>97.6%	>97.8%	>97.8%	
Charge-discharge efficiency	>97.6%	>97.6%	>97.6%	>97.8%	>97.8%	
Protection features						
DC switch			Available			
Anti-islanding	Available					
Output overcurrent protection	Available					
PV/Battery reverse connection protection	Available					
IV curve scanning	Available					
DC surge protection	Level II					
AC surge protection	Level II					
Insulation resistance detection	Available					
AC leak current detection	Available					
Arc fault detection	Optional					
Display and communic	ation		·			
Display			LCD/ APP			
RS485			Supported			
CAN			Supported			
WIFI/4G/LAN			Supported			
Bluetooth			Supported			
General Specifications			^^			
Dimensions (W × H × D)			534*440*232mm			
Weight			27kg			
Operating temperature range	-30°C∼+60°C					
Cooling mode	Natural cooling					

Maximum operating altitude	4000m			
RH	0~100%			
Ingress protection	IP66			
Noise (dB)	<35dB			
Topology	Non-isolated			
Grid standard	G98/G99, VDE-AR-N 4105/VDE V0124, EN 50549-1, VDE 0126/UTE C 15/VFR:2019RD 1699/RD 244/UNE206006/UNE 206007-1, CEI0-21.C10/11, NRS 097-2-1, TOR, EIFS 2018.2, IEC 62116, IEC 1727, IEC 60068IEC 61683EN 50530, MEA, PEA			
Safety/EMC standard	IEC 62109-1/-2,EN 61000-6-1/-3			

Hotline: +86 400 700 9997 E-mail: solar-service@invt.com.cn Website: www.invt-solar.com

 $INVT\ Solar\ Technology\ (Shenzhen)\ Co.,\ Ltd.$

2th Floor, Block B, INVT Guangming Technology

Building, Songbai Road, Matian, Guangming District, Shenzhen, China

This Manual is subject to change without prior notice due to product improvements. All rights reserved. Reproduction is prohibited without prior written permission.

2024.2.27(V1.0)